Supervised Classification of Agricultural Land Cover Using a Modified k-NN Technique (MNN) and Landsat Remote Sensing Imagery

نویسندگان

  • Luis Samaniego
  • Karsten Schulz
چکیده

Nearest neighbor techniques are commonly used in remote sensing, pattern recognition and statistics to classify objects into a predefined number of categories based on a given set of predictors. These techniques are especially useful for highly nonlinear relationship between the variables. In most studies the distance measure is adopted a priori. In contrast we propose a general procedure to find an adaptive metric that combines a local variance reducing technique and a linear embedding of the observation space into an appropriate Euclidean space. To illustrate the application of this technique, two agricultural land cover classifications using mono-temporal and multi-temporal Landsat scenes are presented. The results of the study, compared with standard approaches used in remote sensing such as maximum likelihood (ML) or k-Nearest Neighbor (k-NN) indicate substantial improvement with regard to the overall accuracy and the cardinality of the calibration data set. Also, using MNN in a soft/fuzzy classification framework demonstrated to be a very useful tool in order to derive critical areas that need some further attention and investment concerning additional calibration data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Land Cover Changes Ysing Remote Sensing Technique (Case study: Hableh Rood Subwatershed of Shahrabad Basin)

The growing population and increasing socio-economic necessities creates a pressure on land use/land cover. Nowadays, land use change detection using remote sensing data provides quantitative and timely information for management and evaluation of natural resources. This study investigates the land use changes in part of Hableh Rood Watershed of Iran using Landsat 7 and 8 (Sensor ETM+ and OLI) ...

متن کامل

Application of remote sensing and geographical information system in mapping land cover of the national park

The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...

متن کامل

Supervised Classification of Remotely Sensed Imagery Using a Modified k-NN Technique

Nearest neighbor (NN) techniques are commonly used in remote sensing, pattern recognition and statistics to classify objects into a predefined number of categories based on a given set of predictors. These techniques are especially useful in those cases exhibiting highly nonlinear relationship between variables. In most studies the distance measure is adopted a priori. In contrast, we propose a...

متن کامل

Application of Remote Sensing in Assessing Land Use Changes in Haraz Watershed

Aims: Land-use change due to human activities is one of the important issues in regional and development planning. The aim of this study was to detect land-use changes using Landsat TM, ETM+, IRS and ASTER satellite imagery. Methodology: In this quasi-experimental study, land-use changes in the Haraz watershed over a 23-year period were evaluated. For this study, images of 1992 TM, ETM + 2002, ...

متن کامل

Using remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City

The research used the satellite image (Landsat 7 ETM ) within the thermal infrared sixth band (TIR6) and geographic information system (GIS) to determine the air pollution and its relationship with the land cover (LC) and land use (LU) of Baghdad city. Concentration of total suspended particles (TSP), lead (Pb), carbon oxides (CO, CO2), and sulphur dioxide (SO2) were obtained from 22 ground mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009